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Our aim is to apply Synthetic Tableaux Method (STM, cf. Urbański (2001) and (2002)) to 
classical first-order logic (CL). In the formulation of rules of resulting calculus we use a few 
notions borrowed from certain systems of first-order natural deduction, in particular the 
system BMV by Bocharov, Markin and Voishvilo (cf. Bolotov et al. (2004)) and the system 
by Quine (1950). 
 
We will deal here with language of CL with ¬, ∧, ∨, → and both quantifiers as pimitives. We 
will use individual variables as the only category of names (individual constants and function 
symbols can be introduced, if needed). 
 
By ‘A(x/t)’ we shall mean the result of proper substitution of the term t for x in A. 
By ‘A(xi1, …, xik)’ we shall mean a formula with xi1, …, xik as all the distinct free individual 
variables. 
By an atom we shall mean an atomic formula or a negation of an atomic formula. If A is an 
atomic formula, then the atoms A and ¬A will be called associates and referred to as based on 
the formula A. 
 
If P is an n-place predicate letter and ti1, …, tik are terms, then in the expression P(ti1, …, tik), 
the terms ti1, …, tik will be referred to as the scope of P. 
 
We shall use the following rules: 
 
DN-rule 
A / ¬¬A 
 
CI1-rule  CI2-rule  CR-rule 
¬A / A→B  B / A→B  A, ¬B / ¬(A→B) 
 
KI-rule  KR1-rule  KR2-rule 
A, B / A∧B  ¬A / ¬(A∧B)  ¬B / ¬(A∧B) 
 
DI1-rule  DI2-rule  DR-rule 
A / A∨B  B / A∨B  ¬A, ¬B / ¬(A∨B) 
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GI-rule 
A(xi / xj, yk1, …, yk2) / ∀xi A(xi, yk1, …, ykm) in the conclusion xj is absolutely 

restricted and yk1, …, yk2 are 
relatively restricted (xj restricts yk1, 
…, ykm) 

 
EI-rule 
A(xi / t) / ∃ xi A(xi)   where t is any term 
 
 
GN-rule    EN-rule 
∃ xi ¬A(xi) / ¬∀ xi A(xi)   ∀ xi ¬A(xi) / ¬∃ xi A(xi) 
 
RV-rule 
renaming of bounded individual variables 
 
RS-rule 
substitution of terms for individual variables 
 
 
In the applications of GI-rule we will be using the notation: yk1, …, ykm < xi to indicate that xj 
restricts yk1, …, ykm. Note, that this relation of restriction is transitive, what means in particular 
that, if x < y and y < x, then y restricts itself.  
 
An intuitive meaning of the notions of restriction and relative restriction is, that because of 
semantical reasons generalization of a variable xi limits in a sense (or restricts) possible 
substitution for (free) variables yk1, …, ykm. Details can be found in Bocharov and Markin 
(1994). 
 
In the propositional case synthetic tableaux are defined as families of synthetic inferences. A 
tableau for a formula A consists of synthetic inferences of A or of ¬A. In the first-order case, 
however, we need a notion more general than synthetic inference. The reason is that, because 
of undecidability of CL, it is possible that an attempt to ‘synthesize’ certain formula A or its 
negation fails, that is, that the goal we are aiming at may not be reached. This is why we start 
with the notion of synthetic derivation for a given formula. 
 
DEFINITION 1 
A sequence s = s1, …, sn of formulae is a synthetic derivation for a formula A iff: 

(1)  for any formula si of s, si is a subformula of A or a negation of a subformula of A; 
(2)  s1 is an atom; 
(3)  for any formula sg of s, sg satisfies exactly one of the following  conditions: 

(a)  sg is an atom and the associate to it does not appear in s; 
(b)  sg is derivable from a certain set of formulas such that each element of this set 

occurs in s before sg; 
(4)  no individual variable restricts itself; 
(5)  for every predicate letter P and for every individual variable xi, xi in the scope of P is 

in s absolutely restricted at most once. 
 
Conditions 1, 2, 3a and 3b are, respectively, subformula condition, starting condition, 
introduction of atoms and introduction of compound formulae conditions and they are the 
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same as in the propositional case. The meaning of clauses 4 and 5 will become clear when we 
present some examples. 
 
Synthetic inferences, in turn, can be interpreted as synthetic derivations that reach their goals: 
 
DEFINITION 2 
A synthetic inference of a formula A is a synthetic derivation s = s1, …, sn for A such that sn = 
A. 
 
It is possible, that in two different derivations the very same formula can be derived from 
different sets of formulae, as in propositional case: p→q is a consequence of ¬p and of q as 
well. In the propositional case this does not cause any troubles. In the first-order case, 
however, where multiple applications of GI-rule to the very same variable may result in 
semantical problems, some precautions are needed. In general, we will not allow for multiple 
generalizations on the same formula within one tableau, with one exception: generalizations 
on the same formula, being an element of different derivations, will be allowed if the formula 
will be a point of reconnection of the derivations in question. 
 
DEFINITION 3 
Let s = s1, …, sn and s’ = s’1, …, s’m be distinct sequences of formulas. s and s’ are 
reconnected iff the following hold: 

(1) there exists e ≥ 1 such that se ≠ s’e ; 
(2) there exist h, g (1<h<n, 1<g<m) such that sh = s’g . 

sh and s’g are called points of reconnection of s and s’. 
 
Now we are in a position to introduce our main notion: 
 
DEFINITION 4 
A family Ω of finite sequences of formulas is a synthetic tableau for a formula A iff: 

(1)  each element of Ω is either a synthetic derivation or a synthetic inference of A or of 
¬A; 

(2)  there exists an atomic formula ϕ such that the first term of every sequence in Ω is an 
atom based on ϕ; 

(3)  for every sequence s = s1, …, sn in Ω the following holds: 
if si is an atom, then: 
(a)  Ω contains a certain synthetic inference s’ = s’1,…,s’m such that s’i is an 

associate to si and, if i>1, then s’j = sj for j = 1,…,i-1; 
(b)  if i>1, then for each such a synthetic inference s’ = s’1,…,s’r in Ω that s’j = sj 

for j = 1,…,i-1, the following holds: s’i = si or s’i is an associate to si ; 
(4) no individual variable restricts itself in Ω; 
(5)  for every predicate letter P and for every individual variable xi, xi in the scope of P is 

in Ω absolutely restricted at most once, with the following exception: if s and s’ are 
reconnected and sh and s’g are their points of reconnection, and if sh+1 and s’g+1 result 
from applications of GI-rule, then these applications of GI-rule to sh and s’g are 
considered as one. 

(6) for every individual variable xi: if P1, …, Pr are distinct predicate letters, then xi can be 
absolutely restricted in the scope of each of P1, …, Pr provided that the formulae in 
which xi is absolutely restricted are elements of the very same sequence s of Ω. 
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Clauses 1 – 3 are standard within STM-framework. We shall explain the role of the remaining 
clauses using some examples. 
 
Examples: 
 
1. Synthetic tableau for ‘∃x∀yP(x,y)’ 
 
 

 P(x,y)     ¬P(x,y) 
x<y ∀yP(x,y)    ∃y¬P(x,y) 

   ∃x∀yP(x,y)    ¬∀yP(x,y) 
        ∀x¬∀yP(x,y)  <x 
        ¬∃x∀yP(x,y) 
 
 
In the inference starting with ¬P(x,y) the variable x is absolutely restricted but it does not 
relatively restrict any other variable. Note, that if y were free in ¬∀yP(x,y) it would not be 
possible to use GI-rule here as in this case we would have x<y, y<x and, by transitivity, x<x 
(cf. clause 4 of definition 4) – as in example 3 below. 
 
 
2. Synthetic tableau for ‘∃x∀yP(x,y) → ∀y∃xP(x,y)’ 
 
   P(x,y)     ¬P(x,y) 
   ∃xP(x,y)    ∃y¬P(x,y) 
  <y ∀y∃xP(x,y)    ¬∀yP(x,y) 
   ∃x∀yP(x,y) → ∀y∃xP(x,y)  ∀x¬∀yP(x,y)  <x 
        ¬∃x∀yP(x,y) 
        ∃x∀yP(x,y) → ∀y∃xP(x,y) 
 
 
3. Synthetic tableau for ‘∀y∃xP(x,y) → ∃x∀yP(x,y)’ 
 
   P(x,y)     ¬P(x,y) 
  x<y ∀xP(x,y)    ∀x¬P(x,y)  x<y 
   ∃x∀yP(x,y)     
   ∃x∀yP(x,y) → ∀y∃xP(x,y)   
 
In the inference on the left y restricts x and the formula ∃x∀yP(x,y) → ∀y∃xP(x,y) is derived. 
In fact, this is the only synthetic inference in the above tableau. On the right we have an 
application of GI-rule which leads to self-restriction of x. Strictly speaking, we should not 
interpret the formula ∀x¬P(x,y) as an element of the tableau (cf. definition 4, clause 4). We 
write it down, however, in order to show why it is not possible to derive neither the formula in 
question nor its negation here. 
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4. Synthetic tableau for ‘∃xR(x) → ∀xR(x)’ 
 
   R(x)    ¬R(x) 
  <x ∀xR(x)    ∀x¬R(x)  <x 
   ∃xR(x) → ∀xR(x) 
 
In this tableau x is absolutely restricted twice and, as R(x) and ¬R(x) are not points of 
reconnection, this violates clause 5 of definition 4 (an analogous clause can be found in Quine 
(1950)). 
 
 
5. Synthetic tableau for ‘∀xR(x) → ∃xR(x)’ 
 
   R(x)     ¬R(x) 
   ∃xR(x)     ∃x¬R(x)   
   ∀xR(x) → ∃xR(x)   ¬∀xR(x) 
        ∀xR(x) → ∃xR(x) 
 
6. Synthetic tableau for ‘∀xR(x) ∨ ∀xQ(x) → ∀x(R(x)∨Q(x))’ 
 
 R(x)      ¬R(x) 
 R(x)∨Q(x)     ∃x¬R(x) 
<x ∀x(R(x)∨Q(x))    ¬∀xR(x) 
 ∀xR(x) ∨ ∀xQ(x) → ∀x(R(x)∨Q(x)) 
        
      Q(x)    ¬Q(x)  
      R(x)∨Q(x)   ∃x¬Q(x) 

<x ∀x(R(x)∨Q(x))  ¬∀xQ(x)  
∀xR(x) ∨ ∀xQ(x) → ∀x(R(x)∨Q(x)) ¬(∀xR(x)∨∀xQ(x)) 

∀xR(x) ∨ ∀xQ(x) → ∀x(R(x)∨Q(x)) 
 
Here x is absolutely restricted twice but the two occurences of R(x)∨Q(x) are points of 
reconnections of the inferences in question. Thus, unlike Quine (1950) and Bocharov and 
Markin (1994), we in fact consider some applications of GI-rule as one and the same. This is 
one of two exceptions to the rule, that an individual variable can be absolutely restricted in a 
tableau at most once. 
 
7. Synthetic inference for ‘∀x(R(x)∧Q(x)) → ∀xR(x) ∧ ∀xQ(x)’ 
 
    R(x)   ¬R(x) 
   <x ∀xR(x)  ¬(R(x)∧Q(x)) 
       ∃x¬(R(x)∧Q(x)) 
       ¬∀x(R(x)∧Q(x)) 
  Q(x)    ¬Q(x)  ∀x(R(x)∧Q(x)) → ∀xR(x) ∧ ∀xQ(x) 
 <x ∀xQ(x)   ¬(R(x)∧Q(x)) 
  ∀xR(x) ∧ ∀xQ(x)   ∃x¬(R(x)∧Q(x)) 
∀x(R(x)∧Q(x)) → ∀xR(x) ∧ ∀xQ(x) ¬∀x(R(x)∧Q(x)) 
       ∀x(R(x)∧Q(x)) → ∀xR(x) ∧ ∀xQ(x)  
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In this tableau x is restricted twice in the way that is allowed by clause 6 of definition 4: x is 
absolutely restricted in scope of distinct predicate letters but on the very same path of the 
tableau (this is the second exception to the rule: one variable – one tableau – at most one 
absolute restriction). 
 
In order to introduce the notion of proof we need two more definitions: 
 
DEFINITION 5  
A synthetic inference s of a formula A is finished iff no individual variable absolutely 
restricted in s is free in A. 
 
DEFINITION 6 
A synthetic tableau Ω for a formula A is finished iff all the elements of Ω are finished 
synthetic inferences of A or of ¬A. 
 
Semantical justification for these concepts can be found in Quine (1950) and, to some extent, 
in Bocharov and Markin (1994). 
 
DEFINITION 7 
A proof of a formula A is a finished synthetic tableau Ω for A such that each path of Ω leads 
to A. 
 
THEOREM 
A formula A is valid iff there exists a proof of A. 
 
We suppose that the proof of soundness of the calculus could be similar to the proof of 
semantical consistency of the system BMV by Shangin (cf. Shangin (2004)). On the other 
hand, the most efficient way to prove completeness seems to be the method of interpretation. 
Most promising here are first-order calculi of Socratic proofs (cf. Wiśniewski, Shangin 
(forthcoming)).  
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