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0  The structure 
 
The present report consists of three sections. In Section 1 a short characteristics of STM is 
given together with an informal discussion of the most important notions introduced here. In 
Section 2 it is shown how generation of abducibles works with STM (within the framework of 
purely computational account on abduction, however). In Section 3 there are outlined some 
connections between STM and Theo A.F. Kuipers account on scientific theories and his 
notion of truthlikeness. It is shown also how theory-expansion and theory-revision, which are 
crucial for this analysis, can be performed within the framework of STM. 
 
 
1  Synthetic Tableaux 
 
Synthetic Tableaux Method (STM) is a certain decision method (see Urbański (2001a) and 
(2002a) for details). The fundamental ideas underlying STM can be traced back to the L. 
Kalmár’s proof of the completeness of CPC. Recall, that in this proof one uses the fact that 
every valid formula is entailed by every consistent set made up of all of its propositional 
variables or their negations. However, the original proof of Kalmár is system-dependent: it 
can be applied to every logic which validates certain theorems. STM generalizes its idea. 
Intuitively it can be said that a proof of a formula A consists of all the possible attempts of 
“synthesizing” A or non-A on the basis of the consistent sets of their subformulae (with the 
sets of basic constituents of A or their negations interpreted as representing “initial 
conditions” or “basic assumptions”). A formula in question is proved if and only if all such 
attempts end with A. Mutatis mutandis, the same pertains to STM as a model-seeking 
procedure for sets of formulae. Thus, “one way or another” is the shortest description of the 
ideas underlying STM.  
 
In the present paper we use STM for the first time also as a model-seeking1 method which 
enables deciding problems concerning satisfiability (of sets of formulae) and entailment as 
well as validity of formulae. 
  
The notion of well-formed formula (wff for short) is defined as usual as well as the notion of 
a subformula of a given wff. We use Sub(A) to represent the set of all the subformulae of a 
formula A and Sub(X) to represent the union of sets of subformulae of all the elements of a set 
X of wffs. By a literal we mean a propositional variable or the negation of a propositional 
                                                 
∗ The author was supported by Foundation for Polish Science.  
1 Here and later on we will be using the term ‘model’ in a bit loose way, in the sense that a set of formulae has a 
model iff it is satisfiable. 
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variable. If ϕ is a propositional variable, the literals ϕ and ‘¬ϕ’ will be called associates and 
based on the variable ϕ. 
 
 
1.1 STM – general 
 
Synthetic tableaux are defined as families of sequences of formulae (so called ‘synthetic 
inferences’). We introduce these notions first giving their exact definitions and then clearing 
them up with examples and some discussion. 
 
DEFINITION 1 
A finite sequence s = s1, …, sn of formulae is a synthetic inference of a set X = {A1, …, Ak} of 
wffs iff the following conditions hold: 

(1) subformula condition 
for any formula si of s, si is an element of Sub(X) or the negation of an element of 
Sub(X); 

(2) starting condition 
s1 is a literal; 

(3) for any formula sg of s, sg satisfies exactly one of the following: 
(a) introduction of literals 

sg is a literal and the associate to it does not appear in s; 
(b) introduction of compound formulae 

sg is derivable from a certain set of formulae such that each element of this set 
occurs in s before sg; 

(4) one of the following holds: 
(a) successful closure  

all of the formulae A1, …, Ak are terms of s, or 
(b) unsuccessful closure  

for at least one Ai (i=1, …, k): ¬Ai is a term of s. 
 
A synthetic inference of a set X is successful iff it meets successful closure condition (4a). A 
synthetic inference of a set X is unsuccessful iff it meets unssucceful closure condition (4b). 
 
Inference rules are the following: 
 
 ¬A / A→B  B / A→B  A, ¬B /¬(A→B) 
  

A / A∨B  B / A∨B  ¬A, ¬B /¬(A∨B) 
  

¬A / ¬(A∧B)  ¬B / ¬(A∧B)  A, B / A∧B 
  

A / ¬¬A 
 
 
Example 1 
An unsuccessful synthetic inference s of a set X={p→(q∧r), (p→q)∨(p→r)}: 
 
s = p, ¬q, ¬(q∧r), ¬(p→(q∧r)), r, p→r, (p→q)∨(p→r) 
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A synthetic inference s of a set X of wffs can be interpreted as an attempt to find a model of X. 
In the case of CPC what is relevant to this end are literals of s (as they determine the 
valuations under which the elements of X are true or false). All other terms of s are introduced 
as derivable from what has been previously established in s - thus, in the end, from literals (in 
the above example all the non-literal formulae are entailed by the set {p, ¬q, r}). The 
subformula condition warrants that no ‘irrelevant’ formula appears in s. Closure conditions 
allow to determine wheter an inference in question forms a model of X or not. Notice, that in 
view of the assumed consequence relation, introduction of literals condition guarantees that 
the set of formulae of s is consistent. 
 
A synthetic inference s of a set X is completed iff for every Ai in X: either Ai is a term of s or 
¬Ai is a term of s (thus successful synthetic inferences are always completed). 
 
The reason for introducing this last notion is the following. It is of course enough to have a 
negation of an element of X at a certain inference s to conclude that s does not form a model 
of X. Nevertheless, one may be reasonably interested in how many and which elements of X 
are ‘vicious’, and this will become important in subsequent sections. 
 
Our main notion is given by the following definition: 
 
DEFINITION 2 
A family Ω of finite sequences of formulae is a synthetic tableau for a set X={A1, …,Ak} of 
wffs iff each element of Ω is a synthetic inference of a set X (they are called paths of Ω) and 
the following hold: 

(1) uniform start  
there exists a propositional variable ϕ  such that the first term of every sequence in Ω 
is a literal based on ϕ;  

(2) for every sequence s in Ω the following holds: 
if si is a literal, then: 
(a) fairness of branching  

Ω contains a certain synthetic inference s’ such that s and s’ do not differ up to 
their i-1th terms and si’ is an associate to si; 

(b) binary branching  
if i>1, then for each synthetic inference s’ such that s and s’ do not differ up to 
their i-1th terms: either si’=si or si’ is an associate to si. 

 
The clause 2 of the above definition can be in more exact terms expressed as follows: 

(2’) for every sequence s=s1,…,sn in Ω the following holds: 
if si is a literal, then: 
(a’) Ω contains a certain synthetic inference s’= s1’,…,sm’ such that si’ is an 

associate to si and, if i>1, then sh’=sh for h=1,…,i-1; 
(b’) if i>1, then for each such a synthetic inference s’= s1’,…,sr’ in Ω that sh’=sh 

for h=1,…,i-1, the following holds: si’=si or si’ is an associate to si. 
 

Although synthetic tableaux are defined as sets of sequences of wffs we are going to represent 
them as a tree-like structures, branching downwards, as in the example given below. 
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Example 2 
A synthetic tableau for a a set X={p→(q∧r), (p→q)∨(p→r)}: 
 
     p     ¬p 
  q      ¬q  p→(q∧r) 
  p→q      ¬(q∧r)  p→q 
  (p→q)∨(p→r)     ¬(p→(q∧r)) (p→q)∨(p→r) 
 

r   ¬r       r   ¬r 
q∧r   ¬(q∧r)       p→r   ¬(p→r) 
p→(q∧r)  ¬(p→(q∧r))     (p→q)∨(p→r) ¬(p→q) 

          ¬((p→q)∨(p→r)) 
 
The last formula of a synthetic inference is indicated by underlining – single in the case of 
successful closures, double in the case of unsuccessful ones. 
 
A synthetic tableau for a set X of wffs is a family of synthetic inferences of X that are 
interconnected by uniform start, fairness of branching and binary branching conditions. 
Uniform start together with binary branching guarantee that a tableau branches on literals 
only. Recall, that literals are the only formulae on paths of a tableau that are introduced 
without ‘inferential justification’ (i.e., they are not entailed by any other formula). They may 
be interpreted as assumed premises of a reasoning represented by a certain path. Fairness of 
branching guarantees that introduction of literals is ‘fair’ with respect to the underlying 
semantics. Due to this condition introduction of a literal at a path forces branching of this path 
with simultaneous introduction of an associate of the literal. 
 
These conditions, together with subformula condition of definition 1, may be interpreted as 
forming a very restricted version of cut rule. It is restricted to propositional variables that are 
subformulae of the elements of X and could be called ‘atomic’ or ‘literal’ cut. 
 
With such a tree-like representation of tableaux their synthetic character becomes easily 
visible. Interpreting literals as the simplest pieces (‘bricks’) of information, every path of a 
tableau for X is an attempt to synthetize, as goals, the most compound pieces (the elements of 
X or their negations) on the basis of those ‘bricks’. Fairness of branching is to the effect that 
all the possible relevant combinations of ‘bricks’ are taken into account, thus in a tableau 
search for a model of X becomes systematic2. By ‘relevant’ we mean here ‘sufficient to derive 
goals’: in the above example ‘¬p’ is enough to derive all the elements of X, so there is no 
need to introduce any other literal at the path beginning with ‘¬p’. 
 
 
1.2 Soundness and completeness 
 
Soundness and completness of STM with respect to the underlying semantics are given by the 
following theorem: 
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2 Interpretation of STM as a systematic search procedure can be easily expressed in terms of Inferential Erotetic 
Logic (see Urbański (2001b) for details). 



 
THEOREM 1 (completness-soundness) 
A set X of wffs is satisfiable iff there exists a synthetic tableau Ω for X such that at least one 
path of Ω is successful. 
 
Moreover, it can be proved that there exists a synthetic tableau Ω for X such that at least one 
path of Ω is successful iff every tableau for X has this feature. 
 
As a special case of theorem 1 one gets: 
 
THEOREM 2  
A1, …, Ak =    B iff there exists a synthetic tableau Ω for a set X= {A1, …, Ak, B} such that for 
every element s of Ω at least one of the following holds:  

(1) for at least one Ai (i=1, …, k): ¬Ai is a term of s; 
(2) B is a term of s. 

 
We will be speaking of a tableau for a set X = {A1, …, Ak, B} as of a synthetic tableaux for a 
derivation of a formula B on the basis of wffs A1, …, Ak (and, respectively, of synthetic 
inferences of such derivations). Clauses 1 and 2 of the above theorem express conditions of 
successful closure of synthetic inferences of B on the basis of A1, …, Ak. Let us state them 
explicitly together with unsuccessful closure condition: 
 
DEFINITION 3 
A synthetic inference of a derivation of a formula B on the basis of wffs A1, …, Ak is: 

(1) successful iff one of the following holds: 
(a) for at least one Ai (i=1, …, k): ¬Ai is a term of s; 
(b) B is a term of s; 

(2) unsuccessful iff all of the formulae A1, …, Ak, ¬B are terms of s. 
 
Proofs of theorems 1 and 2 are easy modifications of the proof of the following theorem (cf. 
Urbański (2002a)), which is also a special case of theorem 1: 
 
THEOREM 3 
=     B iff there exists a synthetic tableau Ω for a singleton set X={B} such that every path of Ω 
is a successful. 
 
 
1.3 Partial tableaux, entanglement 
 
In what follows we will make use of the notion of a partial synthetic tableau for a given set of 
formulae: 
 
DEFINITION 4 
A family Ω of finite sequences of formulae is a partial synthetic tableau for a set X of wffs iff 
each element of Ω is a synthetic inference of a set X (they are called paths of Ω) and uniform 
start and binary branching conditions (of definition 2) are met. 
 
Example 3 
A partial synthetic tableau for a a set X={p→(q∧r), (p→q)∨(p→r)}: 
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     p       
  q      ¬q    
  p→q      ¬(q∧r) 
  (p→q)∨(p→r)     ¬(p→(q∧r)) 

 ¬r      r    
 ¬(q∧r)      p→r    

¬(p→(q∧r))     (p→q)∨(p→r)   
 
In the example 3 it is shown a partial synthetic tableau for a a set X={p→(q∧r), 
(p→q)∨(p→r)} such that it consists of unsuccessful paths of the tableau of example 2. 
 
A partial tableau for a given set X may be interpreted as representing a search for a model of X 
with some fixed (or assumed as known) information (this is the effect obtained by dropping 
uniform start and fairness of branching conditions). In the above example what is fixed is the 
starting literal p (as a result, uniform start condition is not fulfilled) and ‘¬r’ in the presence 
of q as well as r in the presence of ‘¬q’ (these violate fairness of branching condition). 
 
One important notion we will be using in the next section is the notion of an entanglement of 
a formula in a certain synthetic inference: 
 
DEFINITION 5 
Let s = s1,…, sn be a synthetic inference of set X ={A1, …, Ak} of wffs. A formula C is 
entangled in s iff  the following holds: 

(1) there exists i = 1, …, n such that C = si; 
(2) (a) there exists a propositional variable ϕ such that C = ϕ or C = ¬ϕ  and there 

exists g = 1, …, k such that si = Ag, or 
(b) there exists j>i such that sj is derivable from a certain set Y of formulae 

such that each element of this set occurs in s before sj, and si∈Y. 
 

Thus a formula C is entangled in s iff C is a term of s and either C is an element of X (if C is a 
literal), or C is used as a premise of an inference rule to obtain another term of s. Informally 
speaking, formulae entangled in an inference s are precisely these which are relevant for the 
success (or the lack of it) of s, that is, the formulae from which the elements of X (or their 
negations) can be derived. 
 
In the example 1 all the formulae of the inference s are entangled except ‘¬(p→(q∧r))’ and 
‘(p→q)∨(p→r)’. In the next example the situation is more complicated: 
 
Example 4 
A synthetic inference s of a set X={(p→q)∨(p→r)}: 
 
s = ¬q, ¬p, p→r, r, p→q, (p→q)∨(p→r) 
 
Here possible sets of entangled formulae are {¬p, p→q} and {¬p, p→r} (note, that r cannot 
be considered as entangled formula as it does not precede p→r in s). As the inference rules 
defining the underlying notion of derivability are non-deterministic, the entanglement is non-
deterministic as well. 
 

 6



 
2 Abduction 
 
2.1 Peirce 
 
Accordind to C.S. Peirce the general structure of an abductive reasoning is the following (cf. 
Magnani (2001)): 

 
The surprising fact, C, is observed. 
But if A were true, C would be a matter of course. 

 
Hence, there is reason to suspect that A is true. 

 
In his early, ‘syllogistic’ theory, deduction, abduction and induction are distinct forms of 
reasoning each of which corresponds to a certain form of a syllogism. Peirce’s own examples 
are the following (cf. Aliseda (1997)): 
 
Deduction 

Rule  All the beans from this bag are white. 
  Case  These beans are from this bag. 
 
  Result  These beans are white. 
 
Here, truth of the Result is warranted by truth of the Rule and the Case. 
 
Induction 

Case  These beans are from this bag. 
  Result  These beans are white. 
 
  Rule  All the beans from this bag are white. 
 
Rule produced as a conclusion of inductive reasoning is validated only in a ‘long run’ (and 
still it may be false). 
 
Abduction 

Rule  All the beans from this bag are white. 
  Result  These beans are white. 
 
  Case  These beans are from this bag. 
 
In abductive reasoning, the Case is suggested, which may explain what is the connection 
between the Rule and the Result. 
 
Later on Peirce proposed an ‘inferential’ theory. He considered abduction, deduction and 
induction as stages composing a method of logical inquiry, of which abduction is the 
beginning: From its [abductive] suggestion deduction can draw a prediction which can be 
tested by induction (Peirce, 5.171). 
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Induction, abduction and deduction as three stages of logical inquiry 

 
 
New data, coming from some external source of information or obtained by inductive 
confirmation of earlier predictions, can give rise to new hypotheses. A circular structure of 
this model reveals non-monotonic character of this method of inquiry: it is possible that 
hypotheses already corroborated can be withdrawn in view of new data. 
 
 
2.2 Abducibles 
 
A very basic intuitions underlying the notion of abductive explanation, or an abducible, are 
expressed by the following definition: 
 
DEFINITION 6 
A formula H is an abductive explanation (an abducible) for a formula A with respect to the set 
of formulae X iff: 
  (C1)  X  non╞   A, and 

(C2) X ∪ {H} ╞   A 
 
The conditions C1 and C2 are the core ones. We can formulate a number of additional 
conditions which can be used to define different styles of abduction. Some examples include: 
 
consistent  (C3)  X ∪ {H} is consistent 
 
explanatory  (C4)  H  non╞   A 
 
minimal  (C5)  H is weakest such explanation 
 
preferential (C6)  H is the best explanation according to some given 

  preferential ordering  
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We are interested here in the core criteria. Let us formulate them in terms of STM: 
 
DEFINITION 7 
A formula H is an abducible for a formula B with respect to the set of formulae X = {A1, …, 
Ak} iff  
 

(C1’)  there exists a synthetic tableau Ω for a derivation of a formula B on the 
basis of wffs  A1, …, Ak such that at least one path of Ω is unsuccessful 
and 

 
(C2’)  there exists a synthetic tableau Ω’ for a derivation of a formula B on the 

basis of wffs  A1, …, Ak, H such that every path of Ω’ is successful. 
 
 
2.3 Generation of abducibles 
 
Consider the following tableau for a derivation of ‘p→(q∧r)’ on the basis of  ‘(p→q)∨(p→r)’: 
 
Example 3: 
 
     p      ¬p 
  q      ¬q   p→(q∧r) 
  p→q      ¬(q∧r) 
  (p→q)∨(p→r)     ¬(p→(q∧r)) 
 

r   ¬r   r   ¬r 
q∧r   ¬(q∧r)   p→r   ¬(p→r) 
p→(q∧r)  ¬(p→(q∧r))  (p→q)∨(p→r)  ¬(p→q) 

          ¬((p→q)∨(p→r)) 
 
This tableau shows that it is not the case that ‘(p→q)∨(p→r)’ entails ‘(p→(q∧r)’ and, 
moreover, it provides relevant countermodels (so to speak, in a bit ‘loose’ way). The problem 
of how to fill the deductive gap can be approached via STM in a few ways. One of them is the 
following. 
 
Take into considerations all the unsuccessful paths, that is, the following partial tableau for a 
derivation of ‘(p→(q∧r)’ on the basis of  ‘(p→q)∨(p→r)’: 
 
 
     p       
  q      ¬q    
  p→q      ¬(q∧r) 
  (p→q)∨(p→r)     ¬(p→(q∧r)) 

 ¬r      r    
 ¬(q∧r)      p→r    

¬(p→(q∧r))     (p→q)∨(p→r)   
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As all the non-literal formulae of a certain path are entailed by the set of its literals it is 
obvious that ‘responsible’ for the lack of success here are two combinations of literals: p, q, 
¬r and p, ¬q, r. Notice, that in both cases all the literals are entangled in the relevant 
inferences. 
 
Now, for each unsuccessful path, build a conjunction of its literals and negate it (in the above 
example obtaining, e.g., ¬( p∧q∧¬r) and ¬( p∧¬q∧r)). Build a conjunction of resulting 
formulae and compute its disjunctive normal form (DNF). 
 
A DNF of ‘¬( p∧q∧¬r) ∧ ¬( p∧¬q∧r)’ is 
‘(¬p∧¬p)∨(¬q∧¬p)∨(r∧¬p)∨(¬p∧q)∨(¬q∧q)∨(r∧q)∨(¬p∧¬r)∨(¬q∧¬r)∨(r∧¬r)’. 
 
It is easy to check that every disjunct (as well as any formula logically eqiuvalent to it) 
together with ‘(p→q)∨(p→r)’ entails ‘(p→(q∧r)’ that is, fills the deductive gap. As for the 
method – simply for any disjunct, take it as an additional premise and try to derive it at every 
unsuccessful path. As an example take ‘r∧q’ and try to extend the above tableau to the tableau 
for a derivation of ‘(p→(q∧r)’ on the basis of  ‘(p→q)∨(p→r)’ and ‘r∧q’. Let us consider 
every path, starting from the left. At the first path there is already present a formula ‘q∧r’, so 
this path remains successful (clause 4a). The second path (an unsuccessful one) contains a 
formula ‘¬(q∧r)’ and thus becomes successful by the clause 4b. The same holds for the third 
path. Moreover, with ‘¬(q∧r)’ present at both third and fourth paths, the new tableau becomes 
shorter than the initial one. 
 
Consider another example (taken from Aliseda(1997)), a tableau for derivation of q on the 
basis of ¬p∨¬r∨q: 
 
Example 4: 
 
    p     ¬p 
         ¬p∨¬r∨q 
  r    ¬r    
      ¬p∨¬r∨q  q ¬q 

q  ¬q        
¬p∨¬r∨q ¬(¬p∨¬r∨q)  q ¬q     

 
Here, the literals of unsuccessful paths are p, ¬r, ¬q and ¬p, ¬q. Notice, however, that in the 
first case p is not entangled. Thus the relevant ‘conjunction of negated conjunctions of 
literals’ is ¬(¬r∧¬q)∧¬(¬p∧¬q). A DNF of this formula is: (p∧r)∨(p∧q)∨(q∧r)∨(q∧q). 
Again, every disjunct is an abducible. 
 
We can define the following procedure for generation of abducibles: 
 

Let Ω be a synthetic tableau for a derivation of a formula B on the basis of wffs  A1, 
…, Ak such that at least one path of Ω is unsuccessful. Let s1, …,sr (r≥1) be all the 
unsuccessful paths of Ω. 

 
1. For s1:  

a. determine the entangled literals of s1; let them be ϕ1, …,ϕp (p≥1); 
b. build a formula C1 = ‘¬(ϕ1∧ …∧ϕp)’; 
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2. Perform step 1 for s2, …,sr (if any); 
3. Build a formula D = ‘C1∧…∧ Cr’; 
 4. Compute a disjunctive normal form of D; 

 
As a result of step 4 one gets a formula of the form ‘E1∨…∨ Et’, where every Ei (i=1, …,t) is 
a conjunction of literals. 
 
Every such Ei (as well as every conjunction and disjunction of Ei’s) and every formula 
logically equivalent to it is an abducible for B with respect to the formulae A1, …, Ak. 
 
The procedure is based on core abductive criteria (C1 and C2) and it may produce abducibles 
which are trivial or too strong, or inconsistent with the underlying theory. In order to make 
additional abductive criteria (as, e.g. C3 – C6) working we need some means for theory 
modification – expansion or revision. 
 
 
3 Theory expansion, theory revision  
 
In the last part of the paper we show how to interpret in terms of STM a conceptual apparatus3 
proposed by T.A.F. Kuipers in his From Instrumentalism to Constructive Realism (Kuipers 
(2000)) and how theory expansion and theory revision work within the STM-framework. 
 
3.1 Propositional Descriptions, Theories and Truthlikeness 
 
Let EP={ϕ1, …, ϕn} be a set of propositional variables, indicating ‘elementary possibilities’. 
A propositional description generated by EP is a pair γ=<Γ, Γ=t>, where: 

- Γ a set made up of literals based on the variables of EP (Γ is called a constituent of γ); 
- Γ=t is a truth-claim of γ (the claim that all the elements of Γ are true). 

 
In terms of STM: if s is a synthetic inference of a given set of formulae, Γ is a set of all the 
literals of s and the truth-claim of γ can be interpreted as a valuation that satisfies all the 
elements of s (this comes from the soundness-completeness theorem of STM). 
 
Let Mp be a set of all the constituents of propositional descriptions generated by EP. Let 
T⊆Mp be a set of all nomic possibilities, defined with respect to a previously chosen domain 
of natural phenomena (that is, the nomic truth). 

- A (general) theory X  is a pair <x, x=T>, where x⊆Mp and x=T is the truth-claim of the 
theory X. 

- A (general) hypotesis Z  is a pair <z, T⊆z>, where z⊆Mp and T⊆z is the truth-claim of 
the hypothesis Z. 

 
In terms of STM: if Ω is a canonical4 synthetic tableau for a given set of formulae, Mp is the 
set of all the sets of literals of the elements of Ω. T, in turn, can be interpreted as the set of all 
the sets of literals of some partial tableau Ω’ (information that is ‘fixed’ here corresponds to 
the choice of domain of phenomena, which itself determines what is nomically possible). 
Thus we may say, although in a bit loose way, that theory differs from hypothesis in that 

                                                 
3 We use it here with slight modifications. 
4 Cf. Urbański (2001b) or (2002a). 
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theory considers all the nomic possibilities while in case of hypothesis it is possible that some 
of them are beyond its scope. 
 
Theory Y is at least similar (close) to the truth as theory X iff: 

(1) y-T is a subset of x-T, 
(2) T-y is a subset of T-x, 

where x, y are subsets of Mp’s of theories X, Y respectively. 
 
An interpretation of this notion in terms of STM is obvious. 
 
In order to show how this apparatus works, Kuipers introduces a very simple example of an 
electrical circuit (see Kuipers (2000), p. 140) which can be easily analyzed in terms of STM.  
 
What is more interesting from our point of view, however, is the problem of truth 
approximation, that is, of ‘upgrading’ theories in order to make them closer to the truth. 
Theory expansion and theory revision are crucial tools for that kind of upgrading. 
 
 
3.2 Expansion  
 
To expand a theory X = {A1, …, Ak} with a formula B: 
 

1. Build a synthetic tableau Ω for X; 
2. Take a partial tableau Ω’ of Ω that consists of these paths of Ω which are successful 

(that is, which have all the elements of X as their terms5); 
3. For every path s’ of Ω’ compute B or ¬B on s’ with the condition that every term of s’ 

must be an element of Sub(A1)∪… ∪Sub(Ak)∪Sub(B) or the negation of an element of 
Sub(A1)∪… ∪Sub(Ak)∪Sub(B). 

 
If at least one path s’’ of the resulting (partial) synthetic tableau Ω’’ for X ∪{B} is such that 
all the elements of X as well as B are terms of s’’, then the expansion is consistent. Otherwise 
it is inconsistent. 
 
Example 5: 
 
Consistent expansion of the theory X={(p→q)∨(p→r)} with r∧q (which is an abducible for 
p→(q∧r) with respect to (p→q)∨(p→r) ): 
 
1. A tableau Ω for {(p→q)∨(p→r)} 
 
     p     ¬p 
  q      ¬q  p→q 
  p→q      ¬(p→q) (p→q)∨(p→r) 
  (p→q)∨(p→r)      

   r   ¬r 
   p→r   ¬(p→r) 

  (p→q)∨(p→r)  ¬((p→q)∨(p→r)) 
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5 Note, that if there is no such path this means that X itself is inconsistent. 



 
2. A (partial) tableau Ω’, that consists of successful paths of Ω 
 
     p     ¬p 
  q      ¬q  p→q 
  p→q      ¬(p→q) (p→q)∨(p→r) 
  (p→q)∨(p→r)     r    

   p→r    
   (p→q)∨(p→r)   

 
 
3. A (partial) tableau Ω’’ for {(p→q)∨(p→r)} ∪ {r∧q}; Ω’’ results from Ω’ by computing 
either r∧q or ¬( r∧q) on each path of Ω’ 
 
    p     ¬p 
  q   ¬q    p→q 
  p→q   ¬(p→q)   (p→q)∨(p→r) 
  (p→q)∨(p→r)  r    

    p→r   q   ¬q  
r   ¬r  (p→q)∨(p→r)     ¬(r∧q) 
r∧q   ¬(r∧q)  ¬(r∧q)      r  ¬r 
           r∧q  ¬(r∧q)    
 
As there are two successful paths (that is, paths on which both (p→q)∨(p→r) and r∧q 
appear), the expansion performed is consistent. 
 
 
Example 6: 
 
Inconsistent expansion of the theory Y={p→q, p} with ¬q 
 
1. 
    p    ¬p 
 
  q    ¬q 
  p→q    ¬(p→q) 
    
 
2. 

p 
    q 
    p→q 
 
3.    p 
    q 
    p→q 
    ¬¬q 
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As no path of the resulting partial tableau is successful, expanded theory Y’ = {p→q, p, ¬q} is 
inconsistent. 
 
 
3.3 Revision  
 
This is a two-step procedure. It consists of: 

1. expansion of a given theory X with some formula (-ae), and 
2. contraction of a resulting theory X’, to eliminate, e.g., inconsistencies. 

 
Example 7: 
 
Revision of the theory Y={p→q, p}, to incorporate ¬q 
 
1. Extension of Y={p→q, p} to Y’={p→q, p, ¬q} 
 
    p    ¬p 
 
  q    ¬q 
  p→q    ¬(p→q) 
  ¬¬q 
 
 
2. Contraction of the (inconsistent) theory Y’={p→q, p, ¬q} 
As we prefer to have ¬q in the revised theory there are two possibilities: 
 
a. to contract Y’ to Z={p→q, ¬q} 
 
    p    ¬p 
        p→q   
  q    ¬q 
  p→q    ¬(p→q) q  ¬q 
  ¬¬q      ¬¬q 
 
b. to contract Y’ to Z’={p, ¬q} 
    

 p    ¬p 
     
   q  ¬q   
   ¬¬q  
 
Both Z, Z’ are consistent. 
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