

Section of Logic and Cognitive
Science

 Institute of Psychology
 Adam Mickiewicz University
 in Poznań

Mariusz Urbański

Socratic Proofs for Some Temporal Logics
RESEARCH REPORT

Szamarzewskiego 89, 60-589 Poznań, Poland
tel.: (48 61) 829 23 07, (48 61) 829 21 07, fax: (48 61) 829 21 07

Socratic Proofs for Some Temporal Logics

Research Report

Mariusz Urbański∗
Section of Logic and Cognitive Science

Institute of Psychology
Adam Mickiewicz University

Szamarzewskiego 89
60-589 Poznań, Poland

e-mail: Mariusz.Urbanski@amu.edu.pl

1 INTRODUCTION

In this report we present a calculus of Socratic proofs for Propositional Linear-Time Logic
(PLTL). This logic, defined by Pnueli (cf. Pnueli (1977)), was the first of the family of
computer science-oriented logics which, in contrast to Prior-like temporal logics, are
interested in computational rather than physical concept of time. The calculus we present here
is based upon the semantical tableau method by Wolper (1985) and it fits into the framework
of Socratic proofs by Wiśniewski (cf. Wiśniewski (2004), Wiśniewski, Vanackere and
Leszczyńska (2005) and Wiśniewski, Shangin (forthcoming)). Similar calculi can be defined
for other temporal logic – we list some of them in the last section of the report.

2 PROPOSITIONAL LINEAR-TIME LOGIC (PLTL)

PLTL (also known as PTL, Propositional Temporal Logic), introduced in Pnueli (1977), is a
propositional temporal logic with semantics defined on the natural numbers time (assumed
model of time is discrete, linear sequence of states, finite in the past, infinite in the future).

The language of PLTL is an extension of the language of Classical Propositional Calculus
(CPC). It contains at least two temporal operators: binary U (until) and unary (at the next
moment in time). The operators (always in the future) and ◊ (at sometime in the
future or eventually) are definable if the language contains the constant T (the Truth).

The PLTL versions of U, ◊, and are so-called non-strict versions of these operators. This
means e.g. that a formula of the form A U B (‘A until B’) is true iff either B is true now (at,
say, t0) or B is true at some time ti in the future and A is true at all points between t0 and ti,
including t0 but not ti (in the strict version in the last clause t0 is not included as well).

PLTL models are tuples M = <T, <, I> , where T is a set of states, < is a binary relation over T
(with usual properties) and I is an interpretation function mapping propositional variables to
truth values at each state.

Semantics for temporal part of PLTL is the following:

<M, ti> ╞ A iff for each tj, if i ≤ j, then <M, ti> ╞ A;

∗ The author was supported by Foundation for Polish Science.

 1

<M, ti> ╞ ◊A iff there exists tj such that i ≤ j and <M, ti> ╞ A;

<M, ti> ╞ A iff <M, ti+1> ╞ A;

<M, ti> ╞ A U B iff there exists tk such that i ≤ k and <M, tk> ╞ B and for all tj such

that i ≤ j < k, <M, tj> ╞ A.

A formula A is PLTL-satisfiable iff there exists M such that <M, t0> ╞ A.

A formula A is PLTL-valid iff for each M , <M, t0> ╞ A.

Different axiomatizations of PLTL exist. We present the one proposed in Gabbay et al.
(1980).

Axiom schemata:

Ax0 all CPC tautologies
Ax1 (A → B) → (A → B)
Ax2 (A → B) → (A → B)
Ax3 ¬A ↔ ¬ A
Ax4 A U B ↔ (B ∨ (A ∧ (A U B)))
Ax5 ((B ∨ (A ∧ C)) → C) → ((A U B) →C)

Rules:

MP Modus Ponens
N Necessitation (for)

PLTL is weakly complete (it is not compact), and it has the finite model property (so it is
decidable).

One of the most characteristic properties of PLTL is that most of the known non-axiomatic
proof methods for this logic – and methods which are at the same time simple, effective and
elegant1 – involve looping and loop-searching. It seems that it is a rather difficult task to
design a proof method without looping for logics which combines two types of temporal
modalities: , which forces discrete model of time and U, which can be interpreted over
discrete as well as over dense models of time.

3 SOCRATIC PROOFS FOR PLTL - THE SYSTEM PLTLT

In order to formulate PLTLT we need to extend the language of PLTL with the following
signs:├ , ?, 1 and 2. Let us call this extended language P*.

Intuitively, ├ stands for derivability relation and ? is a question-forming operator. The
numerals 1 and 2 will be used to encode tree-structure of a Socratic transformation.

1 That is, the methods which are based on resolution or semantic tableaux, or anything that can be interpreted in
terms of finite automata.

 2

There are two disjoint categories of wffs of P*: declarative wffs (d-wffs) and erotetic wffs (e-
wffs), or questions.

There are two types of d-wffs of P*: atomic d-wffs and indexed d-wffs.
Atomic d-wffs of P* are expressions of the form S ├ A, where S is a finite sequence (possibly
with repetitions) of PLTL-wffs, and A is a PLTL-wff, and if A is an empty formula, then S is a
non-empty sequence.

Indexed d-wffs of P* are expressions of the form S ├n A or of the form T ├n, where S ├ A
and T ├ are atomic d-wffs of P* and n is a sequence of 1’s or 2’s, starting with 1.

e-wffs, or questions of P* are expressions of the form ? (Φ), where Φ is a non-empty finite
sequence of indexed atomic d-wffs of P* (constituents of Φ).

For details on Socratic proofs, see Wiśniewski (2004).

In the formulation of rules we shall use the following classification of PLTL formulae to α
and β types:

α α1 α2 β β1 β2 β1*
A ∧ B A B ¬(A ∧ B) ¬A ¬B A
¬(A ∨ B) ¬A ¬B A ∨ B A B ¬A
¬(A → B) A ¬B A → B ¬A B A

A A A ¬ A ¬A ◊¬A A
¬◊B ¬B ¬B ◊B B ◊B ¬B
¬(A U B) ¬B ¬(A∧ (A U B)) A U B B (A∧ (A U B)) ¬B

PT*-rules for PLTLT:

Lα: ? (Φ; S ’α ’T ├n C; Ψ) Rα: ? (Φ; S ├n α; Ψ)
 ? (Φ; S ’α1 ’α2 ’T ├n C; Ψ) ? (Φ; S ├n1 α1; S ├n2 α2; Ψ)

Lβ: ? (Φ; S ’β ’T ├n C; Ψ) Rβ: ? (Φ; S├n β; Ψ)
 (Φ; S ’β1 ’T ├n1 C; S ’β2 ’T ├n2 C; Ψ) ? (Φ; S ’β1*├n β2; Ψ)

LT¬: ? (Φ; S ’¬¬A ’T ├n C; Ψ) RT¬: ? (Φ; S ├n ¬¬A; Ψ)

 ? (Φ; S ’ A ’T ├n C; Ψ) ? (Φ; S ├n A; Ψ)

LF : ? (Φ; S ’ ¬ A ’T ├n C; Ψ) RF : ? (Φ; S ├n ¬ A; Ψ)

? (Φ; S ’ ¬A ’T ├n C; Ψ) ? (Φ; S ├n ¬A; Ψ)

If none of the above rules is applicable to a PLTL formula B, such a formula is called marked.

 3

If all PLTL-formulae within an indexed formula S ├n A are marked, such a formula is called a
state.

S-P: state-prestate rule

? (Φ; S├n A; Ψ)
? (Φ; S*├n A*; Ψ)

where S├n A is a state and S* (resp. A*) results from S (resp. A) by replacing all the formulae
of the form B with B and deleting all the remaining formulae. Every formula of the form
S*├m A*, where n is an initial subsequence of m or m is an initial subsequence of n, is called
a pre-state (cf. Wolper (1985)).

In order to define Socratic transformation and proofs in PLTLT we need the notions of a loop
and of a loop-generating formula:

DEFINITION 1
Let q = <Q1, …, Qr> be a finite sequence of questions of P*. Let Qg, Qh-1, Qh (1 ≤ g < h-1 ≤
r) be elements of the sequence q. Let Sj ├n Aj be a constituent of Qg and let Sk ├m Ak be a
constituent of Qh such that Sj = Sk, Aj = Ak and the sequence n is an initial subsequence of the
sequence m. Let Sl ├i Al be a constituent of Qh-1 such that Sk ├m Ak is obtained from Sl ├i Al
by application of a PT*-rule. Then Sj ├n Aj, …, Sl ├i Al form a loop (a sequence of atomic d-
wffs of P* … etc.) and Sk ├m Ak is called a loop-generating formula.

Socratic transformations are sequences of questions that aim at deciding derivability of
formulae from sets of formulae. Therefore, in order to define the notion of Socratic
transformation, we need two conditions: starting condition (one that describes the starting
point of a transformation) and how-to-proceed condition:

DEFINITION 2
A finite sequence <Q1, …, Qr> of questions of P* is a Socratic transformation of S ├ A iff
the following conditions hold:

(i) Q1 = ? (S ├1 A);
(ii) Qi results from Qi-1 by applying a PT*-rule (where i = 2, …, r).

DEFINITION 3
A constituent φ of a question Qi is called successful iff one of the following holds:

(a) φ is of the form T ’B ’U ├n B, or
(b) φ is of the form T ’B ’U ’¬B ’W ├n C, or
(c) φ is of the form T ’¬B ’U ’B ’W ├n C.

DEFINITION 4
A Socratic transformation <Q1, …, Qr> of S ├ A is completed iff the for each constituent φ
of Qr at least one of the following conditions hold:

(a) no rule is applicable to PLTL-formulae in φ, or
(b) φ is successful, or
(c) φ is a loop-generating formula.

 4

DEFINITION 5
A formula B is called an eventuality in S ├n A iff one of the following holds:
(i) B is a term of S and there exists a PLTL-formula C such that B = ◊C , or
(ii) B = A

DEFINITION 6
A completed Socratic transformation q = <Q1, …, Qn> is a Socratic proof of S ├ A iff:

(a) all the constituents of Qn are successful, or
(b) for each non-successful constituent φ of Qn, φ is a loop-generating formula

and the following holds:
(#) the loop generated by φ contains a pre-state with an
unfulfilled eventuality.

To justify clause 4b observe that, because of the finite model property, a set of formulae
which form a loop containing unfulfilled eventuality cannot be satisfiable. It comprises a
formula saying that in some future state of the model something holds true and there is no
such future state of the model. Thus from the semantical point of view the status of such loops
is similar to that of successful constituents of definition 3.

The following theorems express soundness and completeness of PLTLT:

THEOREM 1
A formula A is PLTL-entailed by a sequence of formulae S iff there exists a Socratic proof of
S ├ A.

THEOREM 2
A formula A is PLTL-valid iff there exists a Socratic proof of ├ A.

THEOREM 3
If there exists a Socratic proof of S├, then the sequence S is inconsistent.

Proofs of these theorems involve construction of a canonical model with maximal consistent
sets of formulae as its states.

4 EXAMPLES

In the examples below by highlighting we indicate we indicate a formula which is analyzed at
a current step. By double underline we indicate a formula which is a state. The question next
to the one containing a state is obtained by state-prestate rule.

Example 1:

?(├1 p → p)
?(p ├1 p)
?(p, p ├1 p)

 5

Example 2:

?(├1 p → p)
?(p ├1 p)
?(p, p ├1 p)
?(p ├1 p)
?(p, p ├1 p)

The intuitive meaning of state-prestate rule is that applying it we (semantically) move from a
given state of temporal model to the next one. The only information we are entitled to
preserve then is contained in formulae of the form A: when moving from the state ti to the
state ti+1 we drop all the other formulae and next-time truths become present truths, so to say.
Note, that because of the rules for operator, we do not loose information about what is
always true as well.

Example 3:

?(├1 (p→ p) ∧ p → p)
?((p→ p) ∧ p ├1 p)
?((p→ p), p ├1 p)
?((p→ p), p ├11 p ; (p→ p), p ├12 p)
?(-”- ; p→ p, (p→ p), p ├12 p)
?(-”- ; ¬p, (p→ p), p ├121 p ; p, (p→ p), p ├121 p)
?(-”- ; -”- ; p, (p→ p), ├121 p)

Here we have an example of a loop. This loop contains formulae: ‘ (p→ p), p ├1 p’,
‘ (p→ p), p ├12 p’, ‘p→ p, (p→ p), p ├12 p’ and ‘ p, (p→ p), p ├121

p’. The loop-generating formula is ‘ (p→ p), ├121 p’. This is also one of the three
constituents of the last question of the above transformation. Observe, that the loop generated
by ‘ (p→ p), ├121 p’ contains a pre-state (namely: ‘ (p→ p), p ├1 p’) with an
unfulfilled eventuality (namely, ‘ p’ right to the turnstile). As the two remaining constituents
are successful, the above transformation is a Socratic proof of ‘├ (p→ p) ∧ p → p’.

Example 4:

?(p, ◊¬p ├1)
?(p, p, ◊¬p ├1)
?(p, p, ¬p ├11 ; p, p, ◊¬p ├12)
?(-”- ; p, ◊¬p ├12)

This is an example of consistency checking. The above transformation is a proof of
‘ p, ◊¬p ├’, thus the set { p, ◊¬p} is inconsistent.

 6

5 OTHER LOGICS

As we mentioned at the beginning, PLTL was the first of the family of computer-science
oriented temporal logics. The class of logics to which the method presented in this report is
applicable comprises:

- logics of strict versions of U, ◊, and ;
- propositional linear-time logics with past operators (at the previous moment in

time, since, always in the past, at sometime in the past; the last three in both
strict and non-strict versions);

- logics of past and future with dense models (that is, without next and previous
operators);

- the vast class of propositional branching-time logics.
In the last case, however, a separate algorithm for loop-searching is rather indispensable in
order to maintain computational effectiveness of the method.

 7

 8

References:

Finger, M., Gabbay, D.M., Reynolds M. (2002), Advanced Tense Logic, in: Gabbay, D.M.,
Guenther, F. (eds.), Handbook of Philosophical Logic, 2nd Edition, vol. 7, pp. 43-203.

Gabbay, D.M., Pueli, A., Shelah, S., Stavi, J. (1980), On the temporal analysis of fairness, 7th
ACM Symposium on Principles of Programming Languages, Las Vegas, pp. 163-173.

Leszczyńska, D. (forthcoming), Socratic Proofs for some Normal Modal Logics, Logique et
Analyse.

Pnueli, A. (1977), The temporal logic of programs, Proc. 18th Symp. on Foundations of
Computer Science, pp. 46-57.

Sistla, A.P, Clarke, E.M. (1985), The complexity of Propositional Linear Temporal Logics,
Journal of the Association for Computing Machinery, vol. 32, No. 3, pp. 733-749.

Wolper, P. (1985), The tableau method for temporal logic: An overview. Logique et Analyse,
28:119–136.

Wiśniewski, A. (2004), Socratic Proofs, Journal of Philosophical Logic 33, No. 3, 2004, pp.
299-326.

Wiśniewski, A., Vanackere, G., Leszczyńska, D. (2005), Socratic Proofs and Paraconsistency.
A Case Study, Studia Logica, No. 80, pp. 431-466.

Wiśniewski, A., Shangin, V.O. (forthcoming), Socratic Proofs for Quantifiers, Journal of
Philosophical Logic.

